Tuesday, January 1

If they run out of experimental Ebola vaccine they might try fermented soy

A big reason the recent Ebola virus outbreak spread quickly in Congo was widespread fear in the region of the experimental Ebola vaccine. Under such conditions, a battery of natural treatments -- including garcinia kola, a traditional African medicinal herb (see report below) -- should have been offered by clinics. But I guess the vaccine developers and governments who pay them were concerned that if such treatments were known to the at-risk population, many would refuse to take an experimental Ebola vaccine. Many refused anyhow, and so the outbreak became a full-scale epidemic. 

August 2, 2014
Natural Treatments for Ebola Virus Exist, Research Suggests
By Sayer Ji
Activist Post

[...]

While the conventional medical system reflexively puts its faith and money into drug and vaccine development, with NIH recently announcing it will begin an early trial on Ebola vaccines this September, very little research has been performed on reducing risk, or mitigating post-infection harm, with the use of time-tested, natural immune-boosting and/or plant-based approaches. Given the low safety risk and cost of botanical- and food-based interventions, this is where we should be looking first for viable, and immediately accessible solutions. Indeed, a recent study published in 2012 holds great promise as far as identifying a natural way to mitigate the virulence – and therefore also widespread fear – associated with Ebola virus.
Published in the journal Archives of Virology and titled, “Inhibition of Lassa virus and Ebola virus infection in host cells treated with the kinase inhibitors genistein and tyrphostin,” researchers at the University of Texas Medical Branch, investigated the potential therapeutic role of two so-called ‘kinase inhibitors’ in interfering with Ebola virus: 1) the plant compound genistein 2) the pharmaceutical drug tyrophostin.
[...]
The researchers sought to identify genistein and tyrophostin’s ability to inhibit viral entry of various viruses known to cause hemorrhagic fever, including Ebola, Marburg virus (MARV), Vesicular Stomatis virus (VSV) and Lassa virus (LASV). Proteins from these four viruses were engineered to be expressed by a special type of virus, known as vesicular stomatitis virus (VSV).
The study found both genistein and tyrophostin individually inhibit the entry of these viruses into the cells, both through interfering with endocytosis (the process by which a cell pulls in a virus) and uncoating proteins (the process by which a virus alters proteins on the surface of the host cell to gain entry). It was also observed that a synergistic effect occurred when genistein and tyrophostin were added together.
[...]
Where does Genistein Come From?
While primarily found in soy products, especially fermented soy foods, wherein beneficial microbes cause the biotransformation of the precursor phytocompound genistin into genistein, it is also found in fava beans, kudzu, coffee and red clover, and many other lesser known medicinal plants.
What Else Does Genistein Do?
At Greenmedinfo.com we have indexed over 150 health benefits of genistein, across 50 mapped physiological pathways, that have been identified in the biomedical literature. You can view them here: Evidence-Based Genistein Benefits. It is interesting to note that genistein’s wide spectrum antiviral properties have already been identified. A 2009 review,[4] in fact, stated:
Genistein is, by far, the most studied soy isoflavone in this regard, and it has been shown to inhibit the infectivity of enveloped or nonenveloped viruses, as well as single-stranded or double-stranded RNA or DNA viruses. At concentrations ranging from physiological to supraphysiological (3.7-370 muM), flavonoids, including genistein, have been shown to reduce the infectivity of a variety of viruses affecting humans and animals, including adenovirus, herpes simplex virus, human immunodeficiency virus, porcine reproductive and respiratory syndrome virus, and rotavirus.
What are Other Potential Natural Therapeutics for Ebola?
First, it must be pointed out that, historically, Ebola virus outbreaks occur in some of the most impoverished places on Earth (primarily the poorest regions of Africa), among populations chronically malnourished, traumatized by sociopolitical unrest and wars, and where modern-day sanitation, hygiene practices, and adequate nutrition are available suboptimally, to say the least.  In other words, the mainstream media’s prediction of a so-called ‘catastrophic’ outbreak in the US and other wealthier countries does not seem to take into account the differing contexts that makes infections like these possible to begin with, with the ‘inner terrain,’ i.e. immune status of the host, fundamental in determining the degree to which an individual becomes susceptible to infection.
With that said, Ebola does appear to be a uniquely pathogenic virus to which the human body has yet had adequate time to properly adapt, and therefore it is instructive to point other potential natural therapies that have been studied in the past:
  • Garcinia kolaAs reported in 1999, extracts from the seeds of this traditional African medicinal herb were found to”…inhibit this virus [Ebola] in cell culture at non-toxic concentrations.”
  • Homeopathic interventionsA study published in 1999 explored the therapeutic potential of a homeopathic preparation of the six-eyed spider venom (Sicarius) at treating symptoms associated with Ebolavirus infection.[5]
  • Estradiol: A 2013 analysis, titled “A systematic screen of FDA-approved drugs for inhibitors of biological threat agents,” found that estradiol exhibited anti-Ebola virus activity in vitro, indicating the relevance of hormonal factors and perhaps gender in susceptibility to the disease – as well as a possible therapeutic role for estradiol if future clinical research confirms these findings.
This is only a small sampling, and the fact is that very little research has been performed in this area. There is a wide range of natural compounds that have yet to be evaluated for their direct anti-Ebola activity and/or immune boosting properties, and that may be highly relevant to the goal of preventing and curing it. The most important consideration is that no infection – including highly lethal ones like Ebola – occurs in a vacuum. Psychological, biological, environmental and sociopolitical factors all determine the incidence, spread, and virulence of viral infections.
Therefore, in the absence of any known drug- or vaccine-based method to prevent or reduce harm from Ebola infection, the aforementioned research and ‘environmental’ considerations may provide future hope and direction for addressing epidemics of this kind. This is especially important considering how profoundly fearful folks have become at the specter of diseases they do not understand — fears which contribute to immunosuppression and therefore may contribute to the self-fulfilling prophecy associated with belief in Ebola’s extreme lethality. 
References
[...]
*********

No comments:

Post a Comment